

Long duration storage: metrics and technologies

ARPA-E Workshop December 7 and 8, 2017

Outline

- ▶ Focus areas for this potential program
- ▶ Economics of long-duration storage, and proposed cost targets
- Implications of the cost target for system design
- Technical approaches

What's in focus for this potential program

- ▶ Electrical input. Electrical *or* thermal (at building conditions) output. No chemical outputs for use in other applications (*e.g.*, hydrogen for hydrocracking)
- Durations of 8 to ~50 hours.
- ▶ Total installed capital costs of 2 to 100 \$/kWh.
- Systems that are location independent.
- ▶ Ideal *per-cycle* costs of ~0.03 \$/kWh-cycle regardless of cycles/year.
- ▶ Round-trip efficiency of >50%, preferably higher.
- System size of at least 100 kW. 10s to 100s of MW is of interest.

Technologies of interest in roundtrip efficiency context

Technologies of interest in roundtrip efficiency context

Outline

- Focus areas for this potential program
- ▶ Economics of long-duration storage, and proposed cost targets
- Implications of our cost target:
- Technical approaches

Storage shifts energy between times of the day

The price differential provides revenue for the storage system

Sample economics for single-day shifting

Capital cost = \sum (Discounted revenues over the project life)

= \sum (Discounted per-cycle revenue) * (Total number of cycles)

Assume:

0.03 \$/kWh-cycle (*this is transformational!!*)

1 cycle/day (roughly consistent with 8-h duration)

20 year project life

10% discount rate

Capital cost = ~ 100 \$/kWh

Note: using only a fixed \$/kWh-cycle ignores other sources of revenue, like capacity payments, so this is a "worst case" economic scenario.

Sample economics for single-day shifting

Capital cost = \sum (Discounted revenues over the project life)

= \sum (Discounted per-cycle revenue) * (Total number of cycles)

Assume:

0.06 \$/kWh-cycle (this is still impactful)

1 cycle/day (roughly consistent with 8-h duration)

20 year project life

10% discount rate

Capital cost = \sim 200 \$/kWh

Sample economics for multi-day shifting

Capital cost = \sum (Discounted revenues over the project life)

= \sum (Discounted per-cycle revenue) * (Total number of cycles)

Assume:

0.03 \$/kWh-cycle (this is transformational!!)

0.25 cycles/day (roughly consistent with 1 cycle per week)

20 year project life

10% discount rate

Capital cost = \sim 25 \$/kWh

Today: a fixed-cycle energy time shift cost target

Installed capital cost (AC basis, \$/kWh)

From a fixed-cycle to a variable cycle cost target function

Installed capital cost (AC basis, \$/kWh)

Why doesn't the per-cycle cost change with cycles/year?

- In ERCOT, >90% of hours clear at <0.05 \$/kWh.
- As another data point, US peakers have a capacity factor of 7%.
- Wind and solar should not get more and more expensive as they move from 50% to 90% of annual energy.

There's a need for a fundamentally different scaling relation

Installed capital cost (AC basis, \$/kWh)

Translating cycles to duration depends on the use case

Capital cost targets vs. duration at rated power

Installed marginal capital cost (AC basis, \$/kWh)

Outline

- Focus areas for this potential program
- ▶ Economics of long-duration storage, and proposed cost targets
- Implications of the cost target for system design
 - Energy density as applied to balance of plant
 - Safety and thermal conditioning
 - Energy storage medium
- Technical approaches

Power conversion stack

Storage tank for daily cycling

Fully dissolved reactants, 25 Wh/L

Storage tanks for beyond daily cycling

Concentrated reactants, >>100 Wh/L

Target <500 \$/kW

Power conversion stack

Storage tank for daily cycling

Storage tanks for beyond daily cycling

Fully dissolved reactants, 15 Wh/L

Concentrated reactants, >100 Wh/L

Target <500 \$/kW

Higher energy density is essential for scaling to GWh size

450MW/22,500MWh Flow Battery Storage

- At 25Wh/L, a 450MW, 50-hour battery would require 9 large crude storage tanks
- Two of these systems would require as much tank storage as a large crude oil terminal
- Louisiana Offshore Oil Port (LOOP): Port Fourchon, LA 10m bbl tank capacity

Safety and thermal conditioning are also key for lowering BOP

▶ Fire detection, suppression and HVAC cost ~15 \$/kWh in Li-ion containers today.

There are also implications for energy storage medium design

There are also implications for energy storage medium design

Outline

- ▶ Focus areas for this potential program
- ▶ Economics of long-duration storage, and proposed cost targets
- Implications of the cost target for system design
- ▶ Technical approaches

Technologies at this workshop: electrochemical

- ▶ Electrons in, electrons out.
 - Mostly flow systems, but non-flow technologies too

Technologies at this workshop: high-temperature thermal

▶ Electrons in, electrons out.

Technologies at this workshop: low-temperature thermal

- Electrons in, thermal out (for direct integration with building thermal systems)
 - Most commercial activity today is cold; we are interested in systems that combine hot and cold storage in a single unit.

An important baseline for our discussions: Li-ion

Installed capital cost (AC basis, \$/kWh)

EXTRAS

